SOLID STATE PHYSICS I

EXAM February 06, 2002

- \diamond Do not forget to write your full name and student number on <u>each</u> sheet.
- \diamond Please use separate sheets for each of the problems.
- \diamond The answers may be given in dutch

Problem 1

Consider a one dimensional material with one monovalent atom A per primitive cell. The lattice constant is a.

- a) What is the density of states per unit length in k-space.
- b) Derive an expression for the Fermi energy within the free electron approximation.
- c) Draw the energy versus wave vector diagram, and indicate the Fermi energy and the first Brillouin zone boundaries.

Let $\Psi(x) = \sum_k C_k exp(ikx)$ be the wave function of an electron in the crystal. The central equation relates the coefficients C_k to the Fourier components U_G of the potential energy: $(\lambda_k - \epsilon)C_k + \sum_G U_G C_{k-G} = 0$, with λ_k the free electron energy $\hbar^2 k^2/2m$. Let the potential energy be $U(x) = 2U\cos(2\pi x/a)$.

- d) Show that the Fourier components U_G of this potential are equal to U.
- e) Use the central equation to calculate the energy gap for k=G/2.
- f) i. Is this material a metal or an insulator (explain !) ?

Would the answer to i. change when

ii. The atom A is divalent (explain !) ?

iii. There is a strong on-site coulomb interaction between the electrons (explain !) ?

Problem 2

a) The magnetic susceptibility of a paramagnetic material is given by the Curie law: $\chi = \frac{M}{B} = \frac{C}{T}$. Consider a ferromagnet in the mean field approximation, where, in addition to the applied field B_a , the surrounding paramagnetic atoms cause an exchange field $B_E = \lambda M$ acting on every moment. Use Curie's law to derive an expression for the susceptibility in the mean field approx-

imation. b) Sketch the magnetization of a ferromagnet as a function of temperature.

c) Consider Iron, for which the mean field parameter $\lambda = 2045$, and the Curie constant C = 0.51 K. At which temperature does Iron order ferromagnetically ?

- d) What are magnons? Sketch the dispersion relation.
- e) The low energy part of the dispersion relation may be approximated by $\hbar\omega = (2JSa^2)k^2$. Derive an expression for the density of magnon modes per unit energy range, $D(\omega)$, using this approximation.
- f) Show that at low temperature the saturation magnetization M(T) varies with temperature as $M(0)(1 - C \cdot T^{3/2})$, where C is a constant.

note: $\int_0^\infty \frac{\sqrt{x}}{e^x - 1} = 2.317$; plank's distribution: $\langle n(k) \rangle = (e^{\hbar \omega_k / k_b T} - 1)^{-1}$

Problem 3

Consider a two dimensional square lattice with lattice constant a. The conventional cell, spanned by the vectors $\vec{a}_1 = (a, 0)$ and $\vec{a}_2 = (0, a)$, contains one type of atoms located at (1/4, 1/4) and (3/4, 3/4).

- a) Calculate the angle between the 'planes' (10) and a (13), denoted in the system $\{\vec{a}_1, \vec{a}_2\}$.
- b) Give a definition of the primitive cell.
- c) Give the primitive vectors of a primitive cell for this lattice. How many atoms does the primitive cell contain ?.
- d) What are the primitive lattice vectors of the corresponding reciprocal lattice ?
- e) The dispersion relation for longitudinal phonons in this lattice is given by:

$$\omega_k^2 = \frac{4C}{m} \left(\sin^2 \frac{k_x a \sqrt{2}}{4} + \sin^2 \frac{k_y a \sqrt{2}}{4} \right)$$

What is the sound velocity for sound waves traveling in the $k_x = k_y$ direction ?

f) Sketch the thermal conductivity for a three dimensional insulating material as a function of temperature.

Which processes determine the thermal conductivity at high temperatures ? What limits the thermal conductivity at low temperatures ?